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Overview
1. COHERENT
Intro, research interests, some results

2. ML applications on individual detectors
• Neutrino Cubes (Dr. J. Daughhetee: jdaughhe@utk.edu) 
• CENNS-10 (Dr. J. Daughhetee)
• NaI 185 (Peibo An: pa77@duke.edu)

3. Conclusion
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The COHERENT Collaboration
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• 21 institutions from 4 countries

• Uses SNS at ORNL as neutrino
source

• Studies coherent elastic  ν–
nucleus scattering (CEνNS) and 
inelastic neutrino interactions 



CEνNS Efforts around the world
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Coherent Elastic  ν–Nucleus Scattering

• Predicted by D. Freedman in 1974 [1]
• Largest of all SM neutrino cross-sections 

at 1-100 MeV scale
• Low energy nuclear recoils
• Sensitive Standard Model Probe
• Applications: Dark Matter Experiments, 

Supernovae, Monitoring
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[1] Coherent effect of a weak neutral current, D. Freedman, PRD v.9, n.5 (1974)



charged-current interactions on 

e

∗

• * indicates that can be in excited states. Deexcitations could produce 
protons, neutrons, gamma rays and alpha particles. 

• The cross section[2]:

• is the axial vector coupling constant, whose quenching affects the rate of 
decay.
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[2] Strength Function of Xe and Iodine-Xenon Neutrino Detector, Yu. S. Lutostansky and N. B. Shul’gina, PRLVol. 67 No. 4, July 1991



COHERENT at the SNS
• Made a successful observation of 

CE NS for the first time using a 14.6 
kg CsI[Tl] scintillator and published 
this result in the journal Science in 
2017[2].

• Observation to precision.

• Multiple detectors deployed.

[2] Observation of Coherent Elastic Neutrino-Nucleus Scattering, D. Akimov et al. (COHERENT), Science (2017). 1708.01294.
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The bottom right figure from: [3] COHERENT Proposal 2018

Using or testing machine learning



Neutrino Cubes
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• Detectors searching for neutrino-induced neutrons; a potential 
CEvNS background.

• Excited nuclei in target material (Fe, Pb) can emit neutrons which 
can produce nuclear recoil events in embedded detectors.

• NIN process yet to be observed; relevant to SNe nucleosynthesis and 
as SNe detection channel (HALO).

BDT for ER/NR classification shows some improvement at lower energies 
for some detector cells. Necessary for lowering recoil energy threshold.

Neutron

Gamma



CENNS-10
• Loaned from J. Yoo et al from Fermilab.

• Single-phase liquid Ar scintillation detector located 28 
m from SNS target  (~2 x 107 ν / s )

• First Production Run: July 2017 -> December 2018
• Dramatically improved light yield results in lower 

threshold (20 keVnr)
• 2x 8” Hamamatsu PMTs with 18% eff @ 400 nm
• Tetraphenyl butadiene (TPB) wavelength shifter 

coating Teflon walls and PMT glass.
• 24 kg fiducial volume.
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arXiv:2003.10630

• Use of PoT signal from SNS greatly reduces steady-state 
backgrounds, BUT 1 Hz/kg of 39Ar events still a large background: Neutrons

e-/γ



Training 2D (1D) CNN Waveforms
Recurrence Plot (2D)
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NR ER

• Time-tagged DT data makes for an excellent source of NR 
waveforms with little accidentally contamination form ER band.

• Training samples defined via cuts in energy, time, PSD.

• Initial results look promising for maintaining discrimination at 
low energies (can lead to lower threshold -> better sensitivity). 

Training History (1D, 2D)

Bkg Classified Sig Classified

DT Generator Data



NaI 185

• Consists of twenty-four 7.7 kg NaI[Tl] scintillating detectors, 1.5-inch thick steel shields 
(white) and 2-inch thick muon vetoes (green). 

• Deployed at the SNS, about 20~21 m from the target. 
• Goal: measure inclusive cross-section
• Dominant Bgs: steady-state muons

The figure from [4]: Preliminary Examination Report: A NaI[Tl] Neutrino Detector for the SpallationNeutron Source, S. Hedges (2017)
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Simulation production

12

Add: Chosen 
targets, B(GT), 
etc

MARLEY
Output events
Add: geometries

Geant4 G4 events
Add:post-
processing

B(GT) values used:
Jon Engel, et al. PhysRevC.50.1702
Yu. S. Lutostansky, et al. PhysRevLett.67.430
M. Palarczyk, et al. PhysRevC.59.500



Convolutional Neural Network
• A convolutional neural network 

(CNN) takes in images with 
categorical labels and outputs labels

• Input: event energy displays of 
simulated events

• Output: labels of particles
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12 by 16

4 by 6

123

Input 4 by 6 Conv2D Pooling Conv2D Pooling Dense Out



Understanding the performance
• Testset made of 200 cc sim, 

1950 muon sim and 50 
neutron sim

• About 77% of cc sim are 
labeled as cc correctly

• About 22% of muon sim are 
labeled as cc incorrectly
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Signal sim 
left Bg sim left

CNN 77% 22%

Cut1 (mul >3) 33.56% 5.28%



Conclusion
• The COHERENT Collaboration has tested/used ML on multiple 

detectors. 

• The results are preliminary, but very promising.

• The developed ML approaches can be generalized to other detector 
setups. 
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Ton-Scale NaI[Tl]


